KECERDASAN BUATAN (AI) DALAM PENDIDIKAN: TINJAUAN LITERATUR SISTEMATIS TENTANG PELUANG, MASALAH ETIKA, DAN IMPLIKASI PEDAGOGIS

Authors

  • Zakaria Efendi Universitas Gadjah Mada, Indonesia
  • Meysella Al Firdha Hanim Universitas Gadjah Mada, Indonesia
  • Adi Santoso IAIN Pontianak, Indonesia

DOI:

https://doi.org/10.24260/jpkk.v4i3.5052

Keywords:

Artificial Intelligence Dalam Pendidikan, Isu Etika, Implikasi Pedagogis, Analitik Pembelajaran, Tinjauan Sistematis

Abstract

Integrasi cepat Artificial Intelligence (AI) dalam pendidikan menghadirkan peluang sekaligus tantangan yang menuntut kajian kritis terkait nilai pedagogis, implikasi etis, dan transformasinya. Studi ini menggunakan metode Systematic Literature Review (SLR) dengan kerangka PRISMA untuk menganalisis 15 artikel terindeks Scopus yang diterbitkan pada periode 2020–2025 dan diperoleh secara sistematis dari berbagai basis data akademik utama. Hasil studi mengidentifikasi tiga tema utama. Pertama, AI menawarkan peluang pedagogis yang signifikan melalui pembelajaran adaptif, umpan balik personal, dan otomatisasi asesmen yang secara kolektif meningkatkan keterlibatan mahasiswa serta mendukung praktik mengajar berbasis data. Kedua, literatur menyoroti tantangan etis berupa privasi data, bias algoritmik, dan kurangnya transparansi dalam pengambilan keputusan otomatis, sehingga menegaskan urgensi pembentukan kerangka etika dan regulasi yang kuat. Ketiga, implikasi pedagogis integrasi AI menuntut pengembangan literasi AI pada pendidik, perancangan ulang strategi pembelajaran, dan kesadaran kritis terhadap peran teknologi dalam membentuk praktik pendidikan. Sebagai respons atas fenomena tersebut, studi ini menegaskan perlunya model tata kelola AI dalam pendidikan yang berpusat pada manusia (human-centered governance model) dengan menempatkan nilai-nilai pedagogis, keadilan, dan otonomi guru sebagai fondasi utama. Implementasi model ini mencakup tiga strategi: (1) integrasi literasi etika-AI dalam kurikulum pendidikan guru agar mereka mampu menilai dan memandu penggunaan teknologi secara kritis; (2) kolaborasi lintas disiplin antara pendidik, pengembang teknologi, dan pembuat kebijakan untuk merumuskan panduan etik yang kontekstual; serta (3) penguatan riset empiris berbasis lokal untuk memastikan penerapan AI selaras dengan kebutuhan sosial, budaya, dan pendidikan di tingkat akar rumput. Dengan pendekatan ini, AI tidak hanya dipahami sebagai inovasi teknologi, melainkan juga sebagai instrumen reflektif untuk merumuskan ulang pedagogi, etika, dan tata kelola ekosistem pembelajaran digital yang berkeadilan dan berkelanjutan.

The rapid integration of Artificial Intelligence (AI) into education presents both opportunities and challenges that demand critical examination of its pedagogical values, ethical implications, and transformative impact. This study employs a Systematic Literature Review (SLR) using the PRISMA framework to analyze fifteen Scopus-indexed articles published between 2020 and 2025, systematically retrieved from major academic databases. The findings identify three major themes. First, AI offers substantial pedagogical opportunities through adaptive learning, personalized feedback, and automated assessment, collectively enhancing student engagement and supporting data-driven teaching practices. Second, the literature highlights ethical challenges such as data privacy, algorithmic bias, and the lack of transparency in automated decision-making, emphasizing the urgency of establishing robust ethical frameworks and governance mechanisms. Third, the pedagogical implications of AI integration call for the development of AI literacy among educators, the redesign of learning strategies, and critical awareness of technology’s role in shaping educational practice. In response to these issues, this study argues for the establishment of a human-centered AI governance model in education, grounded in pedagogical values, equity, and teacher autonomy. The proposed solution involves three interrelated strategies: (1) integrating ethical-AI literacy into teacher education curricula to foster critical and responsible use of technology; (2) promoting cross-disciplinary collaboration among educators, technologists, and policymakers to develop contextually grounded ethical guidelines; and (3) strengthening empirical, locally grounded research to ensure AI implementation aligns with socio-cultural and educational realities. Through this framework, AI is not merely viewed as a technological innovation, but as a reflective instrument to reframe pedagogy, ethics, and governance toward a more just and sustainable digital learning ecosystem.

References

Akgun, S., & Greenhow, C. (2021). Artificial intelligence in education: Addressing ethical challenges in K?12 settings. AI and Ethics, 2(3), 431–440. https://doi.org/10.1007/s43681-021-00096-7

Al-Zahrani, A. M. (2024). Unveiling the shadows: Beyond the hype of AI in education. Heliyon, 10(9), e30696. https://doi.org/10.1016/j.heliyon.2024.e30696

Aler Tubella, A., Mora-Cantallops, M., & Nieves, J. C. (2024). How to teach responsible AI in Higher Education: challenges and opportunities. Ethics and Information Technology, 26(1), 1–14. https://doi.org/10.1007/s10676-023-09733-7

Alfredo, R., Echeverria, V., Jin, Y., Yan, L., Swiecki, Z., Gašević, D., & Martinez-Maldonado, R. (2024). Human-centred learning analytics and AI in education: A systematic literature review. Computers and Education: Artificial Intelligence, 6(December 2023). https://doi.org/10.1016/j.caeai.2024.100215

Almatrafi, O., Johri, A., & Lee, H. (2024). A systematic review of AI literacy conceptualization, constructs, and implementation and assessment efforts (2019–2023). Computers and Education Open, 6(March), 100173. https://doi.org/10.1016/j.caeo.2024.100173

Alotaibi, T. S. (2024). Ethical Challenges with the Informed Consent Process in Pediatric Research Studies. Medical Archives, 78(1), 65–67. https://doi.org/10.5455/MEDARH.2024.78.65-67

Alshammari, S. H., & Alrehaili, T. A. (2025). The effect of teaching, social, and cognitive presence on student engagement in online courses: a structural equation modelling approach. Acta Psychologica, 258(February), 105183. https://doi.org/10.1016/j.actpsy.2025.105183

Andrade-Hidalgo, G., Mio-Cango, P., & Iparraguirre-Villanueva, O. (2024). Exploring the Impact of Artificial Intelligence on Research Ethics - A Systematic Review. Journal of Academic Ethics, 2023. https://doi.org/10.1007/s10805-024-09579-8

Atenas, J., Havemann, L., & Timmermann, C. (2023). Reframing data ethics in research methods education: a pathway to critical data literacy. International Journal of Educational Technology in Higher Education. https://doi.org/10.1186/s41239-023-00380-y

Azizah, Z., Ohyama, T., Zhao, X., Ohkawa, Y., & Mitsuishi, T. (2024). Predicting at-risk students in the early stage of a blended learning course via machine learning using limited data. Computers and Education: Artificial Intelligence, 7(July), 100261. https://doi.org/10.1016/j.caeai.2024.100261

Bach, A., & Thiel, F. (2024). Collaborative online learning in higher education—quality of digital interaction and associations with individual and group-related factors. Frontiers in Education, 9(November), 1–12. https://doi.org/10.3389/feduc.2024.1356271

Batruch, A., Geven, S., Kessenich, E., & van de Werfhorst, H. G. (2023). Are tracking recommendations biased? A review of teachers’ role in the creation of inequalities in tracking decisions. In Teaching and Teacher Education. https://doi.org/10.1016/j.tate.2022.103985

Bayly-Castaneda, K., Ramirez-Montoya, M. S., & Morita-Alexander, A. (2024). Crafting personalized learning paths with AI for lifelong learning: a systematic literature review. Frontiers in Education, 9(August), 1–12. https://doi.org/10.3389/feduc.2024.1424386

Bhutoria, A. (2022). Personalized education and Artificial Intelligence in the United States, China, and India: A systematic review using a Human-In-The-Loop model. Computers and Education: Artificial Intelligence, 3(January), 100068. https://doi.org/10.1016/j.caeai.2022.100068

Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., Pham, P., Chong, S. W., & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: a call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(1). https://doi.org/10.1186/s41239-023-00436-z

Caccavale, F., Gargalo, C. L., Gernaey, K. V., & Krühne, U. (2024). Towards Education 4.0: The role of Large Language Models as virtual tutors in chemical engineering. Education for Chemical Engineers, 49(July), 1–11. https://doi.org/10.1016/j.ece.2024.07.002

Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International. https://doi.org/10.1080/14703297.2023.2190148

du Plooy, E., Casteleijn, D., & Franzsen, D. (2024). Personalized adaptive learning in higher education: A scoping review of key characteristics and impact on academic performance and engagement. Heliyon, 10(21), e39630. https://doi.org/10.1016/j.heliyon.2024.e39630

Fernández-Herrero, J. (2024). Evaluating Recent Advances in Affective Intelligent Tutoring Systems: A Scoping Review of Educational Impacts and Future Prospects. Education Sciences, 14(8). https://doi.org/10.3390/educsci14080839

Fu, Y., Weng, Z., & Wang, J. (2024). Examining AI Use in Educational Contexts: A Scoping Meta-Review and Bibliometric Analysis. In International Journal of Artificial Intelligence in Education (Issue 0123456789). Springer New York. https://doi.org/10.1007/s40593-024-00442-w

Garzón, J., Patiño, E., & Marulanda, C. (2025). Systematic Review of Artificial Intelligence in Education: Trends, Benefits, and Challenges. Multimodal Technologies and Interaction, 9(8), 1–19. https://doi.org/10.3390/mti9080084

Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Shum, S. B., Santos, O. C., Rodrigo, M. T., Cukurova, M., Bittencourt, I. I., & Koedinger, K. R. (2022). Ethics of AI in Education: Towards a Community-Wide Framework. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-021-00239-1

Iniesto, F., & Bossu, C. (2023). Equity, diversity, and inclusion in open education: A systematic literature review. Distance Education. https://doi.org/10.1080/01587919.2023.2267472

Jackson-Summers, A. G., Mrakovcich, K. L., Gray, J. P., Fleischmann, C. M., Emami, T., & Page, E. J. (2024). A systematic review of inclusive pedagogical research using the CIRTL inclusive pedagogy framework: multi-disciplinary and STEM perspectives, current trends and a research agenda. Discover Education, 3(1). https://doi.org/10.1007/s44217-024-00093-y

Jufrianto, M., Basri, M., & Iskandar. (2025). A mixed-methods framework for assessing differentiated instruction implementation barriers in EFL secondary education contexts. MethodsX, 15(June), 103457. https://doi.org/10.1016/j.mex.2025.103457

Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. Computers and Education: Artificial Intelligence. https://doi.org/10.1016/j.caeai.2021.100017

Kooli, C., & Chakraoui, R. (2025). AI-driven assistive technologies in inclusive education: benefits, challenges, and policy recommendations. Sustainable Futures, 10(June), 101042. https://doi.org/10.1016/j.sftr.2025.101042

Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. International Journal of Educational Technology in Higher Education, 20(1), 1–17. https://doi.org/10.1186/s41239-023-00426-1

Langelaan, B. N., Gaikhorst, L., Smets, W., & Oostdam, R. J. (2024). Differentiating instruction: Understanding the key elements for successful teacher preparation and development. Teaching and Teacher Education, 140(May 2023), 104464. https://doi.org/10.1016/j.tate.2023.104464

Merino-Campos, C. (2025). The Impact of Artificial Intelligence on Personalized Learning in Higher Education: A Systematic Review. Trends in Higher Education, 4(2). https://doi.org/10.3390/higheredu4020017

Moldavan, A. M., Edwards-Leis, C., & Murray, J. (2022). Design and pedagogical implications of a digital learning platform to promote well-being in teacher education. Teaching and Teacher Education. https://doi.org/10.1016/j.tate.2022.103732

Mollen, J. (2024). Towards a research ethics of real-world experimentation with emerging technology. Journal of Responsible Technology, 20(October), 100098. https://doi.org/10.1016/j.jrt.2024.100098

Paolucci, C., Vancini, S., Bex, R. T., Cavanaugh, C., Salama, C., & de Araujo, Z. (2024). A review of learning analytics opportunities and challenges for K-12 education. Heliyon, 10(4), e25767. https://doi.org/10.1016/j.heliyon.2024.e25767

Parambil, M. M. A., Rustamov, J., Ahmed, S. G., Rustamov, Z., Awad, A. I., Zaki, N., & Alnajjar, F. (2024). Integrating AI-based and conventional cybersecurity measures into online higher education settings: Challenges, opportunities, and prospects. Computers and Education: Artificial Intelligence, 7(June), 100327. https://doi.org/10.1016/j.caeai.2024.100327

Pinski, M., & Benlian, A. (2024). AI literacy for users – A comprehensive review and future research directions of learning methods, components, and effects. Computers in Human Behavior: Artificial Humans, 2(1), 100062. https://doi.org/10.1016/j.chbah.2024.100062

Proudfoot, K. (2023). Inductive/Deductive Hybrid Thematic Analysis in Mixed Methods Research. Journal of Mixed Methods Research. https://doi.org/10.1177/15586898221126816

Rittmann, H., & Mpofu, N. (2024). Exploring teachers’ self-reported practices for fostering critical thinking skills in ESL multilingual high school settings. Social Sciences and Humanities Open, 10(April), 101156. https://doi.org/10.1016/j.ssaho.2024.101156

Sharples, M. (2023). Towards social generative AI for education: theory, practices and ethics. Learning: Research and Practice. https://doi.org/10.1080/23735082.2023.2261131

Southworth, J., Migliaccio, K., Glover, J., Glover, J. N., Reed, D., McCarty, C., Brendemuhl, J., & Thomas, A. (2023). Developing a model for AI Across the curriculum: Transforming the higher education landscape via innovation in AI literacy. Computers and Education: Artificial Intelligence. https://doi.org/10.1016/j.caeai.2023.100127

Sperling, K., Stenberg, C. J., McGrath, C., Åkerfeldt, A., Heintz, F., & Stenliden, L. (2024). In search of artificial intelligence (AI) literacy in teacher education: A scoping review. Computers and Education Open, 6(December 2023). https://doi.org/10.1016/j.caeo.2024.100169

Stahl, B. C., & Eke, D. (2024). The ethics of ChatGPT – Exploring the ethical issues of an emerging technology. International Journal of Information Management, 74(August 2023), 102700. https://doi.org/10.1016/j.ijinfomgt.2023.102700

Timotheou, S., Miliou, O., Dimitriadis, Y., Sobrino, S. V., Giannoutsou, N., Cachia, R., Monés, A. M., & Ioannou, A. (2023). Impacts of digital technologies on education and factors influencing schools’ digital capacity and transformation: A literature review. Education and Information Technologies. https://doi.org/10.1007/s10639-022-11431-8

Wang, L., & Liang, G. (2025). Data-Driven Teaching and Learning Effect Evaluation in Online Education. International Journal of Web-Based Learning and Teaching Technologies, 20(1). https://doi.org/https://doi.org/10.4018/IJWLTT.381307

Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252(PA), 124167. https://doi.org/10.1016/j.eswa.2024.124167

Woods, P. J., & Copur-Gencturk, Y. (2024). Examining the role of student-centered versus teacher-centered pedagogical approaches to self-directed learning through teaching. Teaching and Teacher Education, 138(August 2023), 104415. https://doi.org/10.1016/j.tate.2023.104415

Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G., Li, X., Jin, Y., & Gašević, D. (2024). Practical and ethical challenges of large language models in education: A systematic scoping review. In British Journal of Educational Technology. https://doi.org/10.1111/bjet.13370

Ye, X., Yan, Y., Li, J., & Jiang, B. (2024). Privacy and personal data risk governance for generative artificial intelligence: A Chinese perspective. Telecommunications Policy, 48(10). https://doi.org/10.1016/j.telpol.2024.102851

Zhai, X., & Nehm, R. H. (2023). AI and formative assessment: The train has left the station. In Journal of Research in Science Teaching. https://doi.org/10.1002/tea.21885

Zhaksylyk, A., Zimba, O., Yessirkepov, M., & Kocyigit, B. F. (2023). Research Integrity: Where We Are and Where We Are Heading. Journal of Korean Medical Science, 38(47), 1–11. https://doi.org/10.3346/jkms.2023.38.e405

Downloads

Published

2025-10-13

How to Cite

Efendi, Z., Hanim, M. A. F., & Santoso, A. (2025). KECERDASAN BUATAN (AI) DALAM PENDIDIKAN: TINJAUAN LITERATUR SISTEMATIS TENTANG PELUANG, MASALAH ETIKA, DAN IMPLIKASI PEDAGOGIS. Jurnal Pendidikan, Kebudayaan Dan Keislaman, 4(3), 134–152. https://doi.org/10.24260/jpkk.v4i3.5052

Issue

Section

Articles